Numerical and Experimental Investigation of Nano zinc Oxide's Effect on the Mechanical Properties of Chloroprene and Natural Rubber (CR/NR) Composites

Author:

Njim Emad Kadum,Hadi Fadhel Abbas,Hamzah Mohsin Noori,Alhilo Naeem Abdulmohsin,Al-Maamori Mohammed Hamza

Abstract

Nanocomposites, especially natural rubber (NR), have been extensively studied for their unique features and superior performance in tire applications. The present research investigated the impact of zinc oxide nanoparticles (ZnO) on the performance of typical rotary machine seals made of chloroprene rubber / natural rubber (CR/NR) composites. An ordinary standard rubber two-roll mill and hydraulic press were used to prepare high-temperature vulcanized CR/NR samples filled with ZnO nanoparticles. Tensile strength, tear resistance, abrasion resistance, resilience, and hardness were measured to determine the effects of nanoparticles on these physical and mechanical properties. Based on the various hyperelastic modeling schemes, enhancement in multiple characteristics of the control sample, such as overhaul properties, was observed. Furthermore, results show that increasing nanoparticle content in the vulcanisates increased the physicomechanical characteristics, such as hardness, resilience, tensile strength, and elastic Modulus at 200% strain. Moreover, hyperelastic analytical modeling shows that the differences with experimental results are less than 5%.

Publisher

Vasyl Stefanyk Precarpathian National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3