On compressed zero divisor graphs associated to the ring of integers modulo $n$
-
Published:2023-12-26
Issue:2
Volume:15
Page:552-558
-
ISSN:2313-0210
-
Container-title:Carpathian Mathematical Publications
-
language:
-
Short-container-title:Carpathian Math. Publ.
Author:
Aijaz M.,
Rani K.,
Pirzada S.ORCID
Abstract
Let $R$ be a commutative ring with unity $1\ne 0$. In this paper, we completely describe the vertex and the edge chromatic number of the compressed zero divisor graph of the ring of integers modulo $n$. We find the clique number of the compressed zero divisor graph $\Gamma_E(\mathbb Z_n)$ of $\mathbb Z_n$ and show that $\Gamma_E(\mathbb Z_n)$ is weakly perfect. We also show that the edge chromatic number of $\Gamma_E(\mathbb Z_n)$ is equal to the largest degree proving that $\Gamma_E(\mathbb Z_n)$ resides in class 1 family of graphs.
Publisher
Vasyl Stefanyk Precarpathian National University
Subject
General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Compressed Cayley graph of groups;Indian Journal of Pure and Applied Mathematics;2024-03-26