Abstract
In this work, we investigate the properties of the topological algebra of entire functions of bounded type, generated by a countable set of homogeneous polynomials on a complex Banach space.
Let $X$ be a complex Banach space. We consider a subalgebra $H_{b\mathbb{P}}(X)$ of the Fréchet algebra of entire functions of bounded type $H_b(X),$ generated by a countable set of algebraically independent homogeneous polynomials $\mathbb{P}.$ We show that each term of the Taylor series expansion of entire function, which belongs to the algebra $H_{b\mathbb{P}}(X),$ is an algebraic combination of elements of $\mathbb{P}.$ We generalize the theorem for computing the radius function of a linear functional on the case of arbitrary subalgebra of the algebra $H_b(X)$ on the space $X.$ Every continuous linear multiplicative functional, acting from $H_{b\mathbb{P}}(X)$ to $\mathbb{C}$ is uniquely determined by the sequence of its values on the elements of $\mathbb{P}.$ Consequently, there is a bijection between the spectrum (the set of all continuous linear multiplicative functionals) of the algebra $H_{b\mathbb{P}}(X)$ and some set of sequences of complex numbers. We prove the upper estimate for sequences of this set. Also we show that every function that belongs to the algebra $H_{b\mathbb{P}}(X),$ where $X$ is a closed subspace of the space $\ell_{\infty}$ such that $X$ contains the space $c_{00},$ can be uniquely analytically extended to $\ell_{\infty}$ and algebras $H_{b\mathbb{P}}(X)$ and $H_{b\mathbb{P}}(\ell)$ are isometrically isomorphic. We describe the spectrum of the algebra $H_{b\mathbb{P}}(X)$ in this case for some special form of the set $\mathbb{P}.$
Results of the paper can be used for investigations of the algebra of symmetric analytic functions on Banach spaces.
Publisher
Vasyl Stefanyk Precarpathian National University
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献