Abstract
In this paper, we show that harmonic convex functions $f$ is strongly $(p, h)$-harmonic convex functions if and only if it can be decomposed as $g(x) = f(x) - c (\frac{1}{x^p})^2,$ where $g(x)$ is $(p, h)$-harmonic convex function. We obtain some new estimates class of strongly $(p, h)$-harmonic convex functions involving hypergeometric and beta functions. As applications of our results, several important special cases are discussed. We also introduce a new class of harmonic convex functions, which is called strongly $(p, h)$-harmonic $\log$-convex functions. Some new Hermite-Hadamard type inequalities for strongly $(p, h)$-harmonic $log$-convex functions are obtained. These results can be viewed as important refinement and significant improvements of the new and previous known results. The ideas and techniques of this paper may stimulate further research.
Publisher
Vasyl Stefanyk Precarpathian National University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Some New Classes of Harmonic Hemivariational Inequalities;Earthline Journal of Mathematical Sciences;2023-08-26