Abstract
The structural and phase composition of boron-rich Fe–В–С alloys in the concentration range of 9.0–16.0 % В, 0.001–1.7 % С, Fe – the balance (in wt. %) was investigated in this work. The cooling rate of the alloys was from 10 to 103 К/s. The methods of quantitative metallographic, X-ray, energy dispersive X-ray, and differential thermal analyses were applied. It was established that the maximal solubility of carbon in Fe2B hemiboride does not exceed 0.55 %, and that in FeB monoboride – 0.41 %. The alloys that belong to two-phase peritectic (Fe2(B,C)+Fe(B,C)) region, two-phase peritectic-eutectic (Fe2(B,C)+Fe(B,C)) region, and three-phase peritectic-eutectic (Fe2(B,C)+Fe(B,C)+C) region of the Fe–В–С phase diagram were distinguished depending on their structure. The appearance of an eutectic constituents in the investigated alloys was explained by transition of peritectic reaction L+Fe(В,С)®Fe2(В,С) to eutectic reaction L®Fe(В,С)+Fe2(В,С) within the temperature range of 1623–1583 К in the presence of carbon. With cooling rate increasing from 10 to 103 К/s, structural constituents tended to be fine, their volume fraction changed, microhardness and fracture toughness increased.
Publisher
Vasyl Stefanyk Precarpathian National University
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献