Manufacturing and Processing of Carbon Nanotubes for H2 Storage

Author:

Namitha R.,Radhika Devi,Kannan Karthik,Krishnamurthy G.

Abstract

In pursuit of manufacturing of carbon nanotubes (CNTs) in good yield at lower temperatures, a mixture of d-block elements such as Iron, Nickel, and Cobalt was expected to be advantageous because of the high yield and low temperature (at 220 - 250° C) synthesis. The physical state and aggregation of these catalyst particles in the reaction medium have been found to play an interesting role in obtaining CNTs at better yield. Carbon nanotubes have been successfully produced by an uncomplicated two-step solvothermal method between sodium and dichlorobenzene via Ni/Fe/Co as catalyst precursor.  The dependence of yield of CNTs on the catalyst system was determined via different ratios of catalysts and at various other experimental conditions such as different heating temperatures, different durations of heating. The X-ray powder diffraction study has indicated the graphite kind of the products. Microscopic characterizations (SEM and TEM) implied us the diameters of carbon nanotubes are 10-14 nm. Raman spectroscopy shows the presence of graphitized carbon in carbon nanotubes. Significant influence by the heating temperature and heating duration has been observed on the product yield.

Publisher

Vasyl Stefanyk Precarpathian National University

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3