Interaction of N-acetylneyraminic acid with surface of silica with fructose in aqueous solution

Author:

Ushakova L.M.,Demianenko E.M.,Terets M.I.,Lobanov V.V.,Kartel N.T.

Abstract

Quantum chemical simulation of the adsorption of N acetylneuraminic acid (NANA) on the surface of silica with the participation of the fructose molecule by the method of density functional theory B3LYP, 6-31G (d, p) was done. The influence of the solvent was taken into account in the supermolecular and continuum approximations, and a cluster approach was used for the adsorption complexes. NANA adsorption of the hydrated silica surface was considered as a process of replacement of water molecules on the silica surface by adsorbate molecules. Two schemes of influence of fructose molecule on NANA adsorption are considered. According to the first scheme, the hydrated NANA molecule interacts with the hydrated silicon-fructose adsorption complex. According to the second scheme, the cluster of hydrated silica interacts with the hydrated NANA-fructose complex. The energy of intermolecular interaction according to the scheme 1 is -9.2 kJ / mol, which is significantly lower compared to the same value with the participation of glucose or sucrose (-20.5 and -86.2 kJ / mol). Scheme 2 proved to be a thermodynamically unfavorable process, as its energy effect is +6.9 kJ / mol, in contrast to similar processes for glucose (-21.8) and sucrose (-87.7 kJ / mol). This confirms the experimental fact of the interaction of substances in a mixture of NANA with carbohydrates in relation to the interaction with silica in comparison with the interaction of substances with silica separately.

Publisher

Vasyl Stefanyk Precarpathian National University

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3