Effect of isovalent substitution on structure of the two-slab BaNd2-xSmxIn2O7 indates

Author:

Titov Y.A.,Belyavina N.M.,Slobodyanik M.S.,Nakonechna O.I.,Strutynska N.Yu.,Chumak V.V.

Abstract

The conditions of isovalent substitution of Nd atoms for Sm atoms in A-positions of the BaNd2In2O7 two-slab perovskite-like structure of the BaNd2-xSmxIn2O7 type (0 £ x £ 1.8) have determined by X-ray powder diffraction methods. Tetragonal crystal structure (space group P42/mnm) of the BaNd2-xSmxIn2O7 phases with substitution degree of Nd atoms equal to 0.5, 1.0, 1.5 and 1.8 was determined by the Rietveld method. Crystal structure of BaNd2-xSmxIn2O7 is based on the two-dimensional (infinite in the XY plane) perovskite-like blocks, consisting of two slabs of the deformed InO6 octahedra connected by vertices. Ba atoms are localized only at 4f position inside the perovskite block, while REE atoms are placed only at 8j position at the boundary of the perovskite block. The adjacent perovskite-like blocks are separated by a slab of LnO9 polyhedra and held together by - O - Ln - O - interblock bonds. It is established that the isovalent substitution of Nd atoms by smaller Sm atoms leads to a decrease in the length of the Ln - O2  distance (from 0.230(2) nm to 0.206(2) nm) and to an increase in the degree of deformation of the interblocks of LnO9 polyhedra, the inner block polyhedra BaO12, and the InO6 octahedra as well. Such structural changes destabilize the interblock "stitching" and are one of the main destruction factors of the slab   perovskite-like structure of the BaNd2-xSmxIn2O7 phases at x > 1.8. Data obtained could be used for directed regulation of structure-sensitive properties of materials based on the BaNd2In2O7 indate.

Publisher

Vasyl Stefanyk Precarpathian National University

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3