Data Reduction for Optimizing Feature Selection in Modeling Intrusion Detection System

Author:

Iman Alif, ,Ahmad Tohari,

Abstract

With the development and ease of access to internet networks, the potential for attacks and intrusions have increased. The intrusion detection system (IDS), an approach to overcome this problem, is grouped into two models: signature-based and anomaly-based. An anomaly-based IDS can be implemented by machine learning; one of the schemes in machine learning is data reduction. IDS datasets are usually obtained through a real-time process that has undefined proportional data. The purpose of data reduction is to speed up and optimize the process, improving accuracy, precision, and specifications. There are several methods to perform data reduction, one of which uses outlier detection techniques. Proper outlier detection has a positive impact on improving the classification results of machine learning. In this research, the outlier detection is done by a circle generated from the k -means clustering of all selected features. Two scenarios are designed for the evaluation: a circle generated from two points of the minimum and maximum cluster and median of all clusters. The formation of clusters conducted by k -means clustering determines the size and direction of the outlier circle so that it dynamically adjusts the distribution of data from the feature selection results. By employing the previous feature selection algorithms, the comparison is performed to evaluate the proposed method's performance. Our empirical results show that the second scenario can significantly improve the classification results in terms of accuracy, detection rate, and precision. The first and second experiments can increase the accuracy by 0.02%, and the third experiment is by 0.1%. The detection rate in the first, second, and third experiments increases by 0.01%, 0.02%, and 0.07. At the same time, precision increases by 0.04%, 0.02%, and 0.01%, correspondingly.

Publisher

The Intelligent Networks and Systems Society

Subject

General Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3