Prediction of LQ45 Index in Indonesia Stock Exchange: A Comparative Study of Machine Learning Techniques

Author:

Syukur Abdul, ,Istiawan Deden,

Abstract

LQ45 is an Indonesia Stock Exchange Index (ISX) incorporate of 45 companies that meet certain criteria to target investors for selecting certain stocks. The prediction of stock price direction in the financial world is a major issue. The implementation of machine learning and other algorithms for market price analysis and forecasting is a very promising field. Different types of classification algorithms were used to predict the stock market. However, when individual studies are considered separately there is no clear consensus that algorithms work best. In this research, a comparison framework is proposed, which aims to benchmark the performance of a wide range of classification models and use them to predict the LQ45 index. The data in this research contains the transaction level and capitalization size are obtained from the Indonesian Stock Exchange (ISX). For analysis purposes, we set out 10 classifiers that can be used to build classification models and test their performance in the LQ45 dataset. The performance criterion chosen to measure this effect is accuracy, recall, and precision. The results showed that the random forest algorithm had the best performance for predicting the LQ45 index. Whilst the classification and regression trees, C4.5, support vector machine, and logistic regression algorithms also perform well. Besides, the models based on traditional statisticalbased learners that are Naïve Bayes and linear discriminant analysis seem to underperform for predicting the LQ45 index. These results are not only beneficial to enrichment the machine learning techniques literature but also have a significant influence on the stock market prediction in terms of the ability to predict the LQ45 index.

Publisher

The Intelligent Networks and Systems Society

Subject

General Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid genetic feature selection and support vector machine for prediction LQ45 index in Indonesia stock exchange;5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONIC, COMMUNICATION AND CONTROL ENGINEERING (ICEECC 2021);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3