A Modified MFCC for Improved Wavelet-Based Denoising on Robust Speech Recognition

Author:

Hidayat Risanuri, ,Winursito Anggun,

Abstract

Research on the current speech recognition system leads to the creation of a noise-resistant system. The Mel Frequency Cepstral Coefficients (MFCC) extraction method becomes a popular method in the speech recognition system. In this paper, the MFCC's weakness of noise interference is the main reason underlies the accomplishment of a robust speech recognition system. Development was carried out by improving the denoising performance using a wavelet transform. Modifications were carried out by analyzing the weakness of the wavelet denoising process on the recognition system using the MFCC method. The analysis was conducted at one of the MFCC stages, the Fast Fourier Transform (FFT) stage. The proposed method was conducted by performing the denoising process using Wavelet only on the noise-related data based on the FFT process' analysis results. The study utilized speech data in the form of eleven isolated words in English added with noise with several different characteristics. Results showed that the proposed method was capable of generating a better accuracy than conventional wavelet denoising methods on the signal to noise ratio (SNR) of 10dB, 15dB, and 20dB using a Fejer Korovkin 6 wavelet type. The highest accuracy increase of the proposed method was in signal to noise ratio (SNR) of 15dB with a rise of 4.63%, followed by a 3.96% increase at 20dB intensity, and 2.3% at 10dB intensity. The performance of the proposed method is then compared with other methods. The results show that the proposed method has the best performance on clean speech and noisy speech at SNR intensities of 10dB, 15dB, and 20dB.

Publisher

The Intelligent Networks and Systems Society

Subject

General Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3