FPGA Implementation of Adaptive Absolute SCORE Algorithm for Cognitive Radio Spectrum Sensing with WTM and LFA

Author:

Kumar Shanigarapu, ,Bikshalu Kalagadda,

Abstract

Cognitive Radio (CR) is generally a wireless communication system that has the ability to improve the network’s system-capacity. Since, the white space or temporally unused spectrum are used to enhance the systemcapacity and the important operation involved in the cognition cycle is spectrum sensing. This spectrum sensing supports the Cognitive Radio users to adjust with the environment by identifying the white/vacant spaces without creating any interference to the primary user communication. The traditional filters such as Finite Impulse Response (FIR) filters and median filters used in the spectrum sensing obtains high area utilization in Cognitive Radio. In order to overcome this, an Adaptive Absolute SCORE (AAS) technique is developed based on the FIR for improving the sensing function and radio sensitivity. The area and frequency of the AAS are enhanced by using the Wallace tree multiplier (WTM) and Ladner-Fischer Adder (LFA) in the design of the FIR. The proposed architecture used for the spectrum sensing is named as AAS-WTM-LFA. This AAS-WTM-LFA architecture is developed in the Xilinx tool for different Virtex devices. The performance of AAS-WTM-LFA is analyzed in terms of LUT, slices, flip flops, bonded Input and Output Block (IOB), frequency and power. Additionally, the quality of signal processed through the AAS-WTM-LFA architecture is analyzed as Bit Error Rate (BER) and False Acceptance Rate (FAR). Additionally, the AAS-WTM-LFA architecture is compared with ACS, AAS, AAS-CSLA, AAS-R8-CSA and AASR8-CSLA. The number of LUT for AAS-WTM-LFA architecture is 247 for Spartan 6 device, that is less when compared to the remaining architectures.

Publisher

The Intelligent Networks and Systems Society

Subject

General Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3