Hybrid Max-Min Genetic Algorithm for Load Balancing and Task Scheduling in Cloud Environment

Author:

Kodli Shilpa, ,Terdal Sujata,

Abstract

In recent decades, task scheduling and load balancing in the cloud is a growing research area, due to the vast amount of data stored in the server highly increases the load. In order to address this concern, Hybrid Max-Min Genetic Algorithm (HMMGA) is proposed for task scheduling and load balancing in the cloud environment. At first, the load is evaluated for every Virtual Machine (VM), if the load is high, then HMMGA is used for balancing the load. HMMGA selects the best VMs to assign the tasks and migrates the over-loaded VMs tasks to the under-loaded VMs. HMMGA significantly avoids the imbalanced workload performance in the cloud environment. In this research paper, the proposed HMMGA performance is compared to Max-Min algorithm, Low time complexity and low cost binary Particle Swarm Optimizer (IBPSO-LBS) and PSO with Technique of Order Preference by Similarity to Ideal Solution (TOPSIS) algorithm to examine the efficacy of HMMGA. From the experimental simulation, the result shows that HMMGA averagely delivers 1.63 and 3.88 seconds less make span compared to the Max-Min and TOPSIS-PSO algorithm for five VMs. In addition, HMMGA averagely enhances 10% to 40% of resource utilization than the MaxMin and TOPSIS-PSO algorithm. In another experiment, the HMMGA approximately showed 1.7 to 25.99 seconds less average waiting time compared to the Max-Min and IBPSO-LBS.

Publisher

The Intelligent Networks and Systems Society

Subject

General Engineering,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Load Balancing Algorithms for Cloud Computing Performance: A Review;Lecture Notes in Networks and Systems;2024

2. Design of Energy Optimization Algorithm for Virtual Machine Scheduling in Cloud Computing;Lecture Notes in Electrical Engineering;2024

3. A Comparative Analysis Report of Nature-Inspired Algorithms for Load Balancing in Cloud Environment;Women in Soft Computing;2023-12-19

4. Enhancing Task Scheduling in Cloud Computing: A Multi-Objective Cuckoo Search Algorithm Approach;2023 3rd International Conference on Advancement in Electronics & Communication Engineering (AECE);2023-11-23

5. Task Scheduling and Resource Allocation in Cloud Computing : A Review and Analysis;2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA);2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3