Apical Thickening of Epicarp is Responsible for Embryo Protection in Acorns of Quercus Variabilis

Author:

Yi Xianfeng12,Yang Yueqin1

Affiliation:

1. College of Agriculture, Henan University of Science and Technology

2. State Key Laboratory of Integrated Pest Management, Institute of Zoology, The Chinese Academy of Sciences

Abstract

The present study explored the evolutionary role of epicarp thickness ofQ. variabilisacorns as a defensive mechanism against weevil infestation. Our results, based on two years' study, suggested that length and fresh mass of insect-damaged acorns were not different from those of intact ones, but width did differ. About 2, 18, and 79% of oviposition sites are distributed at the apical end, middle part, and basal end of acorns, respectively. About 5, 49, and 55% of eggs or larvae are infested at the apical end, middle part, and basal end, respectively. Similarly, about 10, 43, and 45% of emergence holes are found at the apical end, middle part, and basal end. Epicarp thickness varied among the three parts of acorns and was significantly negatively correlated with the appearance percentage of oviposition sites, infestation sites, and emergence sites, respectively. However, secondary metabolites and nutrition reserve showed no close correlation with the appearance percentage of oviposition sites, infestation sites, and emergence sites. Acorns with emergence holes at the apical end exhibited significantly lower seedling emergence and survival rates. Therefore, variation in epicarp thickness in individual acorns may be responsible for the weevil's preference for oviposition, infestation, and emergence, and acts as an alternative and important strategy protecting acorn embryos from pre-dispersal larval damage.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3