Meta-Analysis of Co-Infections in Ticks

Author:

Civitello David J.1,Rynkiewicz Evelyn1,Clay Keith1

Affiliation:

1. Department of Biology, Indiana University

Abstract

Microbial infections typically do not occur in isolation but co-occur within diverse communities of bacteria, fungi, protozoans, and viruses. Co-infections can lead to increased disease severity, lead to selection for increased virulence, and complicate disease diagnosis and treatment. Co-infections also occur in disease vectors, and represent one source of co-infections in hosts. We examined patterns of co-infections in ticks (Order Acari), which vector diverse human and wildlife pathogens, and asked whether the frequency of microbial co-infections deviated significantly from independent associations. Most published data were from Ixodes species and reported infection and co-infection frequencies ofBorrelia burgdorferiandAnaplasma phagocytophilum. A total of 18 datasets representing 4978 adult ticks met our criteria for inclusion in the meta-analysis. Significant deviations from independent co-infection were detected in eight of the 18 populations. Five populations exhibited a significant excess ofA. phagocytophilum/B. burgdorferico-infections, including all populations ofI. ricinusthat deviated from independence. In contrast, both populations ofI. persulcatusand one of two populations ofI. scapularisexhibited a significant deficit of co-infection. The single population ofI. pacificusexamined had a significant excess of co-infection. Our meta-analyses indicate that tick-borne microbes are often distributed non-randomly, but the direction of deviation was not consistent, indicating that multiple mechanisms contribute to these patterns. Unfortunately, most published studies were not designed to describe patterns of co-infection, and provided insufficient data for our meta-analysis. Future studies should more explicitly measure and report co-infections in ticks, including co-infections by endosymbionts.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3