MHD CASSON FLUID STAGNATION POINT FLOW AND HEAT TRANSFER OVER AN EXPONENTIALLY STRETCHING SURFACE IN PRESENCE OF UNIFORM HEAT SOURCE AND SINK WITH SUCTION EFFECT

Author:

LAKSHMI B.1,PRADEEP G.V.2,MOHAN C.B.3

Affiliation:

1. Prayoga Institute of Educational Research, Department of Mathematics, Bengaluru, 560082 Karnataka, India.

2. Visvesvaraya Technological University, Department of Mechanical Engineering, Belagavi, 590018 Karnataka, India.

3. Centre for Incubation, Innovation, Research and Consultancy, Department of Mechanical Engineering, Bengalore, Karnataka, India.

Abstract

The present study reveals the analysis of steady mixed convection MHD stagnation point flow of Casson fluid of non-Newtonian nature and Heat transfer over an exponentially stretching surface where the consequence of uniform heat source and sink are taken in to consideration. The presiding Non-linear Partial differential equations and the corresponding boundary conditions are formulated and thus transformed into pair of non-linear ordinary differential equations. The equations thus obtained are deciphered using Runge-Kutta fourth - order method with the help of MATLAB software. The results obtained for Skin friction coefficient and heat transfer rate for the case of Newtonian fluid are determined, which are in good harmony with the previously proclaimed results of other researchers.The impact of physical quantities such as Casson parameter, buoyancy parameter, Hartmann number, Prandtl number, heat source and sink, Suction parameter, on the fluid velocity and temperature are discussed through graphs for both assisting and opposing flow. The variation in Skin friction coefficient and Nusselt number are tabulated for various values of Hartmann number. Divergence in the velocity profile is observed for increase in Suction for two different values of Velocity ratio parameter. As Skin friction coefficient escalates with suction parameter indicating the exertion of drag force by the surface on the fluid flow. Also, the study reveals that the impact of Hartmann number is to minimize the boundary layer separation.

Publisher

Valahia University of Targoviste - Journal of Science and Arts

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3