A MUNTZ-LEGENDRE APPROACH TO OBTAIN SOLUTIONS OF SINGULAR PERTURBED PROBLEMS

Author:

YUZBASI SUAYIP1,GOK EMRAH2,SEZER MEHMET2

Affiliation:

1. Akdeniz University, Faculty of Science, Department of Mathematics, 07058 Antalya, Turkey.

2. Celal Bayar University, Faculty of Science, Department of Mathematics, 45000 Manisa, Turkey.

Abstract

Singularly perturbed differential equations are encountered in mathematical modelling of processes in physics and engineering. Aim of this study is to give a collocation approach for solutions of singularly perturbed two-point boundary value problems. The method provides obtaining the approximate solutions in the form of Müntz-Legendre polynomials by using collocation points and matrix relations. Singularly perturbed problem is transformed into a system of linear algebraic equations. By solving this system, the approximate solution is computed. Also, an error estimation is done using the residual function and the approximate solutions are improved by means of the estimated error function. Two numerical examples are given to show the applicability of the method.

Publisher

Valahia University of Targoviste - Journal of Science and Arts

Reference13 articles.

1. Kadalbajoo, M.M., Patidar K.C., Applied Mathematics and Computation, 179, 248, 2006.

2. Kadalbajoo, M.K., Parora, P., Computers & Mathematics with Applications, 57, 650, 2009.

3. Kadalbajoo, M.K., Parora, P., Computers & Mathematics with Applications, 52, 654, 2010.

4. Gülsu, M., Öztürk, Y., Sezer, M., Journal Advanced Research in Differential Equations, 3, 1, 2011.

5. Kumar, M., Applied Mathematics and Computation, 142, 283, 2003.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NUMERICAL SOLUTION FOR TWO-DIMENSIONAL NONLINEAR KLEIN-GORDON EQUATION THROUGH MESHLESS SINGULAR BOUNDARY METHOD;Journal of Science and Arts;2023-06-30

2. Application of müntz-legendre polynomials for solving complex differential equations;Sigma Journal of Engineering and Natural Sciences – Sigma Mühendislik ve Fen Bilimleri Dergisi;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3