Author:
Batista Érica Aparecida,Garcia Luane Ferreira,Albuquerque Antonio João Carvalho de,Ballaminut Nara,Scalize Paulo Sérgio,Gil Eric Souza
Abstract
The chemical and pharmaceutical industries are the main generators of residues, such as phenolic microcontaminants, including catechol, resorcinol, p-nitrophenol and 4-chlorophenol. Therefore, this work aims to identify these microcontaminants through an emerging contaminant biosensor by means of an enzymatic biosensor constructed with an enzymatic extract from the fungus Marasmiellus colocasiae. Based on the differential pulse voltammetry electrochemical technique, the biosensor was used to analyze the patterns of catechol, resorcinol, p-nitrophenol and 4-chlorophenol. The analysis of a sample prepared with these standards in water from the public supply network was also carried out. As a result, it was possible to verify that the biosensor developed in this study is more sensitive than conventional methods and has a greater affinity for catechol. In the sample prepared with the standards, it was possible to qualitatively identify the presence of 4-chlorophenol, resorcinol and catechol. The proposed biosensor was sensitive and has potential for application in the analysis of microcontaminants in the environment with the detection limit = 0.17 µmol L-1, and the quantification limit = 0.52 µmol L-1.
Publisher
Instituto de Pesquisas Ambientais em Bacias Hidrograficas (IPABHi)
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Aquatic Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献