Methodological approaches for imputing missing data into monthly flows series

Author:

Bleidorn Michel Trarbach,Pinto Wanderson de Paula,Schmidt Isamara Maria,Mendonça Antonio Sergio Ferreira,Reis José Antonio Tosta dos

Abstract

Missing data is one of the main difficulties in working with fluviometric records. Database gaps may result from fluviometric stations components problems, monitoring interruptions and lack of observers. Incomplete series analysis generates uncertain results, negatively impacting water resources management. Thus, proper missing data consideration is very important to ensure better information quality. This work aims to analyze, comparatively, missing data imputation methodologies in monthly river-flow time series, considering, as a case study, the Doce River, located in Southeast Brazil. Missing data were simulated in 5%, 10%, 15%, 25% and 40% proportions following a random distribution pattern, ignoring the missing data generation mechanisms. Ten missing data imputation methodologies were used: arithmetic mean, median, simple and multiple linear regression, regional weighting, spline and Stineman interpolation, Kalman smoothing, multiple imputation and maximum likelihood. Their performances were compared through bias, root mean square error, absolute mean percentage error, determination coefficient and concordance index. Results indicate that for 5% missing data, any methodology for imputing can be considered, recommending caution for arithmetic mean method application. However, as the missing data proportion increases, it is recommended to use multiple imputation and maximum likelihood methodologies when there are support stations for imputation, and the Stineman interpolation and Kalman Smoothing methods when only the studied series is available. Keywords: Doce river, imputation, missing data.

Publisher

Instituto de Pesquisas Ambientais em Bacias Hidrograficas (IPABHi)

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3