Affiliation:
1. ATAŞEHİR ADIGÜZEL MESLEK YÜKSEKOKULU, ATAŞEHİR ADIGÜZEL MESLEK YÜKSEKOKULU
2. MARMARA ÜNİVERSİTESİ
Abstract
Abstract— blue light-emitting-diodes (LEDs) are special and different then the other LEDs due to their high-efficient lighting. They have large badgap energy. So gallium nitrides are mostly used during designing blue light. This application focus on the emission properties of a InGaN LED. The emission intensity, energy diagram, spectrum, and efficiency are calculated for an applied voltage. The indium and GaN composition in the blue LED can be varied to control the emission wavelength. In here, composition of InGaN and operational voltage values were varied to control wavelength. Effects of the different InGaN composition and different voltage values were given in results as comperehansively for 5 different simulations. This study is dissimalar than other wevelength studies due to used original parameter values and wavelength compared methods for many situations about InGaN percentage and volatage values. As a result of simulations, we can infer that the high In_x percentage in composition and high voltage makes wavelength gap of an blue LED larger.
Publisher
Balkan Journal of Electrical & Computer Engineering (BAJECE)
Reference14 articles.
1. [1] S. Nakamura, T. Mukia, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, p. 1687, 1994.
2. [2] S.Muthu, J.Gaines, “Red, green and blue LED-based white light source:implementation challenges and control design”, 38th Conference Record of the IEEE Industry Applications Society Annual Meeting (IAS), 2003.
3. [3] Y. Nanishi, “The birth of the blue LED”, Nature Photonics, 2014.
4. [4] K.Meel, P. Mahala, “Design and Fabrication of Multi Quantum well based GaN/InGaN Blue LED”, IOP Conference Series Materials Science and Engineering, 2018.
5. [5] Q. Dai et. al., “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett., vol. 94, 111109, 2009.