Classification of Myopathy and Normal Electromyogram (EMG) Data with a New Deep Learning Architecture

Author:

TUNCER Erdem1ORCID,DOĞRU BOLAT Emine2ORCID

Affiliation:

1. KOCAELİ ÜNİVERSİTESİ BİYOMEDİKAL MÜHENDİSLİĞİ

2. KOCAELI UNIVERSITY

Abstract

Electromyograms (EMG) are recorded movements of nerves and muscles that help diagnose muscles and nerve-related disorders. It is frequently used in the diagnosis of neuromuscular diseases such as myopathy, which causes many changes in EMG signal properties. The most useful auxiliary test in the diagnosis of myopathy is EMG. Therefore, it has become imperative to identify computer-assisted anomalies with full accuracy and to develop an efficient classifier. In this study, a new machine learning method with a deep learning architecture that can score normal and myopathy EMG from the EMGLAB database is proposed. Using the discrete wavelet transform Coiflets 5 (Coif 5) wavelet, the EMG signals are decomposed into subbands and various statistical features are obtained from the wavelet coefficients. The success rates of the decision tree C4.5 algorithm, which is one of the traditional learning architectures, and the Long Short-term Memory (LSTM) algorithm, which is one of the deep learning architectures, were compared. Unlike the studies in the literature, with the LSTM algorithm, a 100% success rate was achieved with the proposed model. In addition, a real-time approach is presented by analyzing the test data classification time of the model.

Publisher

Balkan Journal of Electrical & Computer Engineering (BAJECE)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3