Ear semantic segmentation in natural images with Tversky loss function supported DeepLabv3+ convolutional neural network

Author:

INAN Tolga1,KACAR Umit1

Affiliation:

1. ÇANKAYA ÜNİVERSİTESİ

Abstract

Semantic segmentation is a fundamental problem for computer vision. On the other hand, for studies in the field of biometrics, semantic segmentation is gaining more importance. Many successful biometric recognition systems require a high- performance semantic segmentation algorithm. In this study, we present an effective ear segmentation technique in natural images. A convolutional neural network is trained for pixel-based ear segmentation. DeepLab v3+ network structure, with ResNet-18 as the backbone and Tversky lost function layer as the last layer, has been trained with natural and uncontrolled images. We perform the proposed network training using only the 750 images in the Annotated Web Ears (AWE) training set. The corresponding tests are performed on the AWE Test Set, University of Ljubljana Test Set, and the Collection A of In-The-Wild dataset. For the Annotated Web Ears (AWE) dataset, intersection over union (IoU) is measured as 86.3% for the AWE database. To the best of our knowledge, this is the highest performance achieved among the algorithms tested on the AWE test set.

Publisher

Balkan Journal of Electrical & Computer Engineering (BAJECE)

Subject

General Medicine

Reference42 articles.

1. [1] A. Abaza, A. Ross, C. Hebert, M. A. F. Harrison, and M. S.Nixon, “A survey on ear biometrics,” ACM Computing Surveys,vol. 45, no. 2, pp. 1–35, Feb. 2013, number: 2 Reporter: ACMComputing Surveys. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2431211.2431221

2. [2] A. Pflug and C. Busch, “Ear biometrics: a survey of detection,feature extraction and recognition methods,” IET Biometrics, vol. 1,no. 2, pp. 114–129, Jun. 2012, number: 2 Reporter: IET Biometrics.[Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2011.0003

3. [3] Z. Emersic, D. Stepec, V. Struc, P. Peer, A. George, A. Ahmad, E. Omar,T. E. Boult, R. Safdaii, Y. Zhou, S. Zafeiriou, D. Yaman, F. I. Eyiokur,and H. K. Ekenel, “The unconstrained ear recognition challenge,” in2017 IEEE International Joint Conference on Biometrics (IJCB), Oct.2017, pp. 715–724, meeting Name: 2017 IEEE International JointConference on Biometrics (IJCB) Reporter: 2017 IEEE InternationalJoint Conference on Biometrics (IJCB) ISSN: 2474-9699.

4. [4] Z. Emersic, A. K. S. V, B. S. Harish, W. Gutfeter, J. N. Khiarak,A. Pacut, E. Hansley, M. P. Segundo, S. Sarkar, H. J. Park, G. P. Nam, I.-J. Kim, S. G. Sangodkar, U. Kacar, M. Kirci, L. Yuan, J. Yuan, H. Zhao,F. Lu, J. Mao, X. Zhang, D. Yaman, F. I. Eyiokur, K. B. Özler, H. K.Ekenel, D. P. Chowdhury, S. Bakshi, P. K. Sa, B. Majhi, P. Peer, andV. Štruc, “The Unconstrained Ear Recognition Challenge 2019,” in 2019International Conference on Biometrics (ICB), 2019, pp. 1–15.

5. [5] Z. Emersic, J. Krizaj, V. Struc, and P. Peer, “Deep Ear RecognitionPipeline,” in Recent Advances in Computer Vision: Theories andApplications, ser. Studies in Computational Intelligence, M. Hassaballahand K. M. Hosny, Eds. Cham: Springer International Publishing,2019, pp. 333–362, reporter: Recent Advances in Computer Vision:Theories and Applications. [Online]. Available: https://doi.org/10.1007/978-3-030-03000-1 14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3