An Approach for DC Motor Speed Control with Off-Policy Reinforcement Learning Method

Author:

TÜFENKÇİ Sevilay1ORCID,KAVURAN Gürkan1ORCID,YEROĞLU Celaleddin2ORCID

Affiliation:

1. MALATYA TURGUT ÖZAL ÜNİVERSİTESİ

2. İNÖNÜ ÜNİVERSİTESİ

Abstract

In the literature, interest in automatic control systems that do not require human intervention and perform at the desired level increases day by day. In this study, a Twin Delay Deep Deterministic Policy Gradient (TD3), a reinforcement learning algorithm, automatically controls a DC motor system. A reinforcement learning method is an approach that learns what should be done to reach the goal and observes the results that come out with the interaction of both itself and the environment. The proposed method aims to adjust the voltage value applied to the input of the DC motor in order to reach output with single input and single output structure to the desired speed.

Publisher

Balkan Journal of Electrical & Computer Engineering (BAJECE)

Subject

General Medicine

Reference21 articles.

1. R.S. Sutton, "Reinforcement Learning: Past, Present and Future", Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Vol. 1585, 1998, 195–197.

2. L.P. Kaelbling, M.L. Littman, A.W. Moore, "Reinforcement Learning: A Survey", J. Artif. Intell. Res., Vol. 4, 1996, pp. 237–285.

3. R.S. Sutton, A.G. Barto, "Reinforcement Learning: An Introduction", 1998.

4. J. Xue, Q. Gao, W. Ju, "Reinforcement learning for engine idle speed control", 2010 Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA 2010, Vol. 2, 2010, pp. 1008–1011.

5. E. Uchibe, M. Asada, K. Hosoda, "Behavior coordination for a mobile robot using modular reinforcement learning", IEEE Int. Conf. Intell. Robot. Syst., Vol. 3, 1996, pp. 1329–1336.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3