Method for control by orbital spacecraft magnetic cleanliness based on multiple magnetic dipole models with consideration of their uncertainty

Author:

Kuznetsov B. I.ORCID,Nikitina T. B.ORCID,Bovdui I. V.ORCID,Chunikhin K. V.ORCID,Kolomiets V. V.ORCID,Kobylianskyi B. B.ORCID

Abstract

Aim. Development of method for control by orbital spacecraft magnetic cleanliness based on multiple magnetic dipole models using compensation of the initial magnetic field with consideration of magnetic characteristics uncertainty. Methodology. Orbital spacecraft multiple magnetic dipole models calculated as solution of nonlinear minimax optimization problem based on near field measurements for prediction orbital spacecraft far magnetic field magnitude. Nonlinear objective function calculated as the weighted sum of squared residuals between the measured and predicted magnetic field. Weight matrix calculated as inverse covariance matrix of random errors vector. Values of magnetic moments and coordinates of placement of compensating magnetic dipoles for compensation of the orbital spacecraft initial magnetic field also calculated as solution of nonlinear minimax optimization problem. Both solutions of this nonlinear minimax optimization problems calculated based on particle swarm nonlinear optimization algorithms. Results. Results of prediction spacecraft far magnetic field magnitude based on orbital spacecraft multiple magnetic dipole models using near field measurements and compensation of the initial magnetic field with consideration of orbital spacecraft magnetic characteristics uncertainty for ensuring the orbital spacecraft magnetic cleanliness. Originality. The method for control by orbital spacecraft magnetic cleanliness based on multiple magnetic dipole models using compensation of the initial magnetic field with consideration of magnetic characteristics uncertainty is developed. Practical value. An important practical problem of ensuring orbital spacecraft magnetic cleanliness based on orbital spacecraft multiple magnetic dipole models using near field measurements and compensation of the initial magnetic field with consideration of orbital spacecraft magnetic characteristics uncertainty solved.

Publisher

National Technical University Kharkiv Polytechnic Institute

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetic Characterization of Spacecraft Equipment in a Magnetic Shielded Room;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3