Energy management based on a fuzzy controller of a photovoltaic/fuel cell/Li-ion battery/supercapacitor for unpredictable, fluctuating, high-dynamic three-phase AC load
-
Published:2023-04-23
Issue:3
Volume:
Page:66-75
-
ISSN:2309-3404
-
Container-title:Electrical Engineering & Electromechanics
-
language:
-
Short-container-title:Electrical Engineering & Electromechanics
Author:
Ayat Y.ORCID,
Badoud A. E.ORCID,
Mekhilef S.ORCID,
Gassab S.ORCID
Abstract
Introduction. Nowadays, environmental pollution becomes an urgent issue that undoubtedly influences the health of humans and other creatures living in the world. The growth of hydrogen energy increased 97.3 % and was forecast to remain the world’s largest source of green energy. It can be seen that hydrogen is one of the essential elements in the energy structure as well as has great potential to be widely used in the 21st century. Purpose. This paper aims to propose an energy management strategy based a fuzzy logic control, which includes a hybrid renewable energy sources system dedicated to the power supply of a three-phase AC variable load (unpredictable high dynamic). Photovoltaic (PV), fuel cell (FC), Li-ion battery, and supercapacitor (SC) are the four sources that make up the renewable hybrid power system; all these sources are coupled in the DC-link bus. Unlike usual the SC was connected to the DC-link bus directly in this research work in order to ensure the dominant advantage which is a speedy response during load fast change and loads transient. Novelty. The power sources (PV/FC/Battery/SC) are coordinated based on their dynamics in order to keep the DC voltage around its reference. Among the main goals achieved by the fuzzy control strategy in this work are to reduce hydrogen consumption and increase battery lifetime. Methods. This is done by controlling the FC current and by state of charge (SOC) of the battery and SC. To verify the fuzzy control strategy, the simulation was carried out with the same system and compared with the management flowchart strategy. The results obtained confirmed that the hydrogen consumption decreased to 26.5 g and the SOC for the battery was around 62.2-65 and this proves the desired goal.
Publisher
National Technical University Kharkiv Polytechnic Institute
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献