Estimation of electrical resistivity of conductive materials of random shapes

Author:

Gans Š.ORCID,Molnár J.ORCID,Kováč D.ORCID

Abstract

Introduction. Electrical resistivity is an important material characteristic in the field of electrical engineering and material science. There are several methods that can be used to measure resistance, like the 4-wire method which relates the resistance to a voltage drop at a given current flow, but to define the resistivity from the resistance value requires an analytical expression for the given system which requires a sufficient mathematical apparatus for describing complicated shapes. Therefore we use finite element method computations to compute the resistivity of a metal material. This approach has been already used for different materials like concrete and aluminum in the past. We then compare this method with an analytical expression that due to intuition could approximate the solution sufficiently. After that, the same material is used again to test the electrical isotropy of the sample. Novelty. A method is developed by combining the results of experimental studies and the results of mathematical modelling of the process of determining the electrical conductivity of metals. The goal is to describe and employ a method of measuring the electrical resistivity of metal objects of random shapes. Using this method, it is possible to measure the resistivity of materials without the need to manufacture them into wires or ribbons. Methods. The solution to the problem was carried out by the finite element method via the COMSOL Multiphysics 5.6 simulation program in a cartesian coordinate system and the resistance between two points of the metal sample was measured by the 4-wire method. Results. A similar resistance value was obtained when the measuring terminals were placed in different places. The difference between them was within 1,5 % and the obtained values were close to the values given by the literature for the electrical resistivity of electrical steels. Terminal size influences the measured conductivity and a max error of 5,2 % was estimated. Practical value. A method of estimating the resistivity of materials without the need to manufacture them into specific shapes, like wires or ribbons, for which analytical expressions between resistivity and resistance are easily derived.

Publisher

National Technical University Kharkiv Polytechnic Institute

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3