The method of multi-objective parametric design of magnetic field active canceling robust system for residential multy-story buildings closed to double-circuit overhead power lines
-
Published:2023-03-05
Issue:2
Volume:
Page:27-36
-
ISSN:2309-3404
-
Container-title:Electrical Engineering & Electromechanics
-
language:
-
Short-container-title:Electrical Engineering & Electromechanics
Author:
Kuznetsov B. I.ORCID,
Nikitina T. B.ORCID,
Bovdui I. V.ORCID,
Voloshko O. V.ORCID,
Kolomiets V. V.ORCID,
Kobylianskyi B. B.ORCID
Abstract
Aim. Development the method of multi-objective parametric design for robust system of active canceling of magnetic field based on binary preference relations of local objective for multi-objective minimax optimization problem. Methodology. Spatial location coordinates of the compensating winding and the current in the shielding winding were determined during the preference-based multi-objective parametric design of systems of active canceling based on solution of the vector minimax optimization, in whith the vector objective function calculated based on Biot-Savart's law. The solution of this vector minimax optimization problem calculated based on nonlinear Archimedes algorithm. Components of Jacobi matrix and Hesse matrix calculated based on multi-swarm multi-agent optimization. Results. Theoretically and experimentally confirmed the effectiveness of reducing the level of the magnetic field in residential multy-storey old building of a double-circuit overhead power transmission lines with a barrel-type arrangement of wires by means of active shielding with two compensation winding. Originality. The method of multi-objective parametric design for robust system of active canceling of magnetic field based on binary preference relations of local objective for multi-objective minimax optimization problem is developed. Practical value. It is shown the possibility to reduce the level of magnetic field in residential multy-storey old building closed to double-circuit overhead power transmission lines with a barrel-type arrangement of wires by means of system of active canceling with two canceling winding to a level safe for the population with an induction of 0.5 μT.
Publisher
National Technical University Kharkiv Polytechnic Institute
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献