Abstract
Introduction. Reduction of cogging torque is the crucial design consideration of axial flux brushless DC (BLDC) motor, particularly for low-speed applications. Aim. The slot opening displacement technique is presented in this article to reduce cogging torque in axial flux BLDC motors suitable for electric two-wheeler applications. Methods. Double rotor single stator configuration of axial flux BLDC motor is the most suitable for such vehicular applications. Initially double rotor single stator 250 W, 150 rpm axial flux BLDC motor is designed with stator slot opening in middle position and considered as reference motor for further analysis. To evaluate the cogging torque profile of the reference motor 3D finite element modeling and analysis are performed. The design is enhanced by dividing all stator teeth into groups and displacing the slot openings of each group in opposite direction with respect to the adjacent group. Results. The influence of slot opening displacement on cogging torque is evaluated with finite element modeling and analysis. As cogging torque is reduced from 1.23 N×m to 0.63 N×m, the slot opening displacement technique is found to be effective in reducing cogging torque of axial flux BLDC motor.
Publisher
National Technical University Kharkiv Polytechnic Institute
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献