Power quality improvement by using photovoltaic based shunt active harmonic filter with Z-source inverter converter

Author:

Sai Thrinath B. V.ORCID,Prabhu S.ORCID,Meghya Nayak B.ORCID

Abstract

Introduction. The major source of energy for a long time has been fossil fuels, however this has its drawbacks because of their scarcity, exhaustibility, and impossibility of reusing them. Presently, a shunt active harmonic filter-equipped two-stage solar photovoltaic system is showing off its performance shunt active harmonic filter. The global power system has been impacted by current harmonics during the most modern industrial revolution. Novelty. The proposed work is innovative, by adopting the hysteresis modulation mode with Z-source inverter to enhance the performance of the system. Furthermore, the shunt active harmonic filter also get assists in this system for better improvement in the quality of power. Purpose. By incorporating an impedance source inverter and a photovoltaic shunt active harmonic filter methods, harmonic issues are mitigated. Methods. Load compensation is one of the services that the shunt active harmonic filter offers, in addition to harmonic compensation, power factor correction, and many other functions. The current pulse width modulation voltage source inverter method is more expensive, requires two converters owing to its two-stage conversion, has significant switching losses, and has a low rate of the reaction. The new model, in which the voltage source inverter is substituted out for a Z-source inverter converter, has been developed in order to address the problems of the existing system. Results. Rather than using a hybrid of DC-DC and DC-AC converters, the suggested system uses a shunt active harmonic filter that is powered by a photovoltaic source using a Z-source inverter. Utilizing Z-source inverter helps to address the present issues with conventional configurations. Practical value. By using software MATLAB/Simulink, this photovoltaic shunt active harmonic filter technique is analyzed. Shunt active harmonic filter, which produces compensatory current from the reference current obtained as from main supply, is powered by the photovoltaic array.

Publisher

National Technical University Kharkiv Polytechnic Institute

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Split‐source inverter with adaptive control scheme‐based shunt active power filter for power quality improvement;IET Power Electronics;2024-07-17

2. An Grid-Integrated Electric Vehicles with Hybrid Energy Storage for Optimal Power Management;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

3. Advanced Power Quality in Hybrid PV-Wind Systems with TSK Fuzzy Control;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

4. Contribution of using a photovoltaic unified power quality conditioner in power quality improvement;Electrical Engineering & Electromechanics;2024-06-21

5. An Assessment of Power Regulation Strategy and Fuzzy Controller for a Grid-Interfaced Solar Photovoltaic System;2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3