Fuzzy model based multivariable predictive control design for rapid and efficient speed-sensorless maximum power extraction of renewable wind generators

Author:

Babes B.ORCID,Hamouda N.ORCID,Kahla S.ORCID,Amar H.ORCID,Ghoneim S. S. M.ORCID

Abstract

Introduction. A wind energy conversion system needs a maximum power point tracking algorithm. In the literature, several works have interested in the search for a maximum power point wind energy conversion system. Generally, their goals are to optimize the mechanical rotation or the generator torque and the direct current or the duty cycle switchers. The power output of a wind energy conversion system depends on the accuracy of the maximum power tracking controller, as wind speed changes constantly throughout the day. Maximum power point tracking systems that do not require mechanical sensors to measure the wind speed offer several advantages over systems using mechanical sensors. The novelty. The proposed work introduces an intelligent maximum power point tracking technique based on a fuzzy model and multivariable predictive controller to extract the maximum energy for a small-scale wind energy conversion system coupled to the electrical network. The suggested algorithm does not need the measurement of the wind velocity or the knowledge of turbine parameters. Purpose. Building an intelligent maximum power point tracking algorithm that does not use mechanical sensors to measure the wind speed and extracts the maximum possible power from the wind generator, and is simple and easy to implement. Methods. In this control approach, a fuzzy system is mainly utilized to generate the reference DC-current corresponding to the maximum power point based on the changes in the DC-power and the rectified DC-voltage. In contrast, the fuzzy model-based multivariable predictive regulator follows the resultant reference current with minimum steady-state error. The significant issues of the suggested maximum power point tracking method, such as the detailed design process and implementation of the two controllers, have been thoroughly investigated and presented. The considered maximum power point tracking approach has been applied to a wind system driving a 5 kW permanent magnet synchronous generator in variable speed mode through the simulation tests. Practical value. A practical implementation has been executed on a 5 kW test bench consisting of a dSPACEds1104 controller board, permanent magnet synchronous generator, and DC-motor drives to confirm the simulation results. Comparative experimental results under varying wind speed have confirmed the achievable significant performance enhancements on the maximum wind energy generation and overall system response by using the suggested control method compared with a traditional proportional integral maximum power point tracking controller.

Publisher

National Technical University Kharkiv Polytechnic Institute

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3