Total harmonic distortion analysis of inverter fed induction motor drive using neuro fuzzy type-1 and neuro fuzzy type-2 controllers

Author:

Srinivas G.ORCID,Durga Sukumar G.ORCID,Subbarao M.ORCID

Abstract

Introduction. When the working point of the indirect vector control is constant, the conventional speed and current controllers operate effectively. The operating point, however, is always shifting. In a closed-system situation, the inverter measured reference voltages show higher harmonics. As a result, the provided pulse is uneven and contains more harmonics, which enables the inverter to create an output voltage that is higher. Aim. A space vector modulation (SVM) technique is presented in this paper for type-2 neuro fuzzy systems. The inverter’s performance is compared to that of a neuro fuzzy type-1 system, a neuro fuzzy type-2 system, and classical SVM using MATLAB simulation and experimental validation. Methodology. It trains the input-output data pattern using a hybrid-learning algorithm that combines back-propagation and least squares techniques. Input and output data for the proposed technique include information on the rotation angle and change of rotation angle as input and output of produced duty ratios. A neuro fuzzy-controlled induction motor drive’s dynamic and steady-state performance is compared to that of the conventional SVM when using neuro fuzzy type-2 SVM the induction motor, performance metrics for current, torque, and speed are compared to those of neuro fuzzy type-1 and conventional SVM. Practical value. The performance of an induction motor created by simulation results are examined using the experimental validation of a dSPACE DS-1104. For various switching frequencies, the total harmonic distortion of line-line voltage using neuro fuzzy type-2, neuro fuzzy type-1, and conventional based SVMs are provided. The 3 hp induction motor in the lab is taken into consideration in the experimental validations.

Publisher

National Technical University Kharkiv Polytechnic Institute

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3