Efficiency of multi-armature linear pulse electromechanical power and speed converters

Author:

Bolyukh V. F.ORCID,Kocherga O. I.ORCID

Abstract

Introduction. High-speed linear pulse electromechanical converters (LPEC) provide acceleration of the executive element in a short active section to high speed with significant displacement, while power-purpose LPECs create powerful power impulses of the executive element on the object of influence with minor movements. One of the areas of improvement of LPEC is the creation of multi-armature structures. Methodology. To analyze the electromechanical characteristics and indicators of LPEC, a mathematical model was used, which takes into account the interconnected electrical, magnetic, mechanical and thermal processes that occur when connected to a pulse energy source with a capacitive energy storage. The main results of the calculations were performed in the COMSOL Multiphysics software environment and confirmed by experimental studies in laboratory conditions. Results. The features of the electromechanical processes of multi-armature LPECs are established and their indicators are determined. With the help of efficiency criteria, which take into account electrical, power, speed and magnetic indicators in a relative form with different options for their evaluation strategy, it was established that multi-armature LPECs for power purposes have increased efficiency, and for high-speed LPECs the use of multi-armature configurations is impractical. The conducted experimental studies confirm the reliability of the calculated results. Originality. It has been established that almost all multi-armature LPECs for power purposes have higher efficiency compared to a converter with one armature, and for high-speed LPECs it is advisable to use traditional LPECs with one armature. Practical value. On the basis of multi-armature LPECs, models of an electromagnetic UAV catapult, a magnetic pulse press for ceramic powder materials, an electromechanical device for dumping ice and snow deposits from a power line wire, a device for destroying information on a solid-state digital SSD drive have been developed and tested. References 20, tables 4, figures 8.

Publisher

National Technical University Kharkiv Polytechnic Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3