Reproducing of the humidity curve of power transformers oil using adaptive neuro-fuzzy systems

Author:

Vasilevskij V.V.ORCID,Poliakov M.O.ORCID

Abstract

Introduction. One of the parameters that determine the state of the insulation of power transformers is the degree of moisture content of cellulose insulation and transformer oil. Modern systems of continuous monitoring of transformer equipment have the ability to accumulate data that can be used to reproduce the dynamics of moisture content in insulation. The purpose of the work is to reproduce the curve of the of humidity of transformer oil based on the results of measuring the temperature of the upper and lower layers of oil without the need for direct measurement of moisture content by special devices. Methodology. The construction of a fuzzy neural network is carried out using networks based on adaptive neuro-fuzzy system ANFIS. The network generated using the Grid Partition algorithm without clustering and Subtractive Clustering. Results. The paper presents a comparative analysis of fuzzy neural networks of various architectures in terms of increasing the accuracy of reproducing the moisture content of transformer oil. For training and testing fuzzy neural networks, the results of continuous monitoring of the temperature of the upper and lower layers of transformer oil during two months of operation used. Considered twenty four variants of the architecture of ANFIS models, which differ in the membership functions, the number of terms of each input quantity, and the number of training cycles. The results of using the constructed fuzzy neural networks for reproducing the dynamics of moisture content of transformer oil during a month of operation of the transformer are presented. The reproducing accuracy was assessed using the root mean square error and the coefficient of determination. The test results indicate the sufficient adequacy of the proposed models. Consequently, the RMSE value for the network constructed using Grid Partition method was 0.49, and for the network built using the Subtractive Clustering method – 0.40509.

Publisher

National Technical University Kharkiv Polytechnic Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3