PERICLASE-SPINEL REFRACTORY MODIFIED ТІО2

Author:

Borysenko OksanaORCID,Logvinkov SergiiORCID,Shabanova HalynaORCID,Ostapenko Igor,Gaponova Olena

Abstract

Over the past decades, the development and improvement of refractory materials for lining high-temperature zones of rotary kilns continues. The main requirements for refractory products for lining rotary kilns for cement clinker roasting are: high density and ultimate compressive strength, low porosity and gas permeability, increased abrasion resistance, low thermal conductivity, high corrosion resistance and the ability to form a protective layer.Today, the main goal of modern researchers is to create a heat-resistant refractory with a flexible structure that ensures its integrity at high temperatures and mechanical loads, which have the ability to form a protective coating layer. In this work, a technological approach has been tested for introducing a vibro-milled modifier (briquette based on a high-alumina component and a titanium-containing additive) into the composition of the raw charge for periclase-spinel refractory in the form of a pre-synthesized product containing crystalline phases of the Al2O3 – TiO2 – FeO system. The basis for the production of periclase-spinel refractories modified with TiO2 is the four-component system MgO – Al2O3 – FeO – TiO2, on the basis of thermodynamic calculations of which the content of individual components of the charge was selected and the operational characteristics were predicted. The interrelation of physical and mechanical properties with the content of individual components in the initial charge warehouses is shown, and the directions of solid-phase processes with their participation are noted. The features of the microstructure of the sample material are noted in relation to the formation of an optimal set of properties. It is shown that the nature of the organization of micropores is favorable for increasing the thermal stability of the material, which complements the phase adaptation mechanism also with the structural effect of damping mechanical stresses during thermal cycling.

Publisher

National Technical University Kharkiv Polytechnic Institute

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3