ANALYSIS OF MULTI-THREADED MARKOV SYSTEMS

Author:

Raskin Lev,Sukhomlyn Larysa,Sagaidachny Dmytro,Korsun Roman

Abstract

Known technologies for analyzing Markov systems use a well-operating mathematical apparatus based on the computational implementation of the fundamental Markov property. Herewith the resulting systems of linear algebraic equations are easily solved numerically. Moreover, when solving lots of practical problems, this numerical solution is insufficient. For instance, both in problems of structural and parametric synthesis of systems, as well as in control problems. These problems require to obtain analytical relations describing the dependences of probability values of states of the analyzed system with the numerical values of its parameters. The complexity of the analytical solution of the related systems of linear algebraic equations increases rapidly along with the increase in the system dimensionality. This very phenomenon manifests itself especially demonstratively when analyzing multi-threaded queuing systems.  Accordingly, the objective of this paper is to develop an effective computational method for obtaining analytical relations that allow to analyze high-dimensional Markov systems. To analyze such systems this paper provides for a decomposition method based on the idea of phase enlargement of system states. The proposed and substantiated method allows to obtain analytical relations for calculating the distribution of Markov system states.  The method can be effectively applied to solve problems of analysis and management in high-dimensional Markov systems. An example has been considered

Publisher

National Technical University Kharkiv Polytechnic Institute

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resource distribution method in computer systems on integrated software platforms;Системи обробки інформації;2022-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3