Oleate attenuates palmitate-induced endoplasmic reticulum stress and apoptosis in placental trophoblasts

Author:

Colvin Bryanne N,Longtine Mark S,Chen Baosheng,Costa Maria Laura,Nelson D Michael

Abstract

Pre-pregnancy obesity is increasingly common and predisposes pregnant women and offspring to gestational diabetes, pre-eclampsia, fetal growth abnormalities and stillbirth. Obese women exhibit elevated levels of the two most common dietary fatty acids, palmitate and oleate, and the maternal blood containing these nutrients bathes the surface of trophoblasts of placental villi in vivo. We test the hypothesis that the composition and concentration of free fatty acids modulate viability and function of primary human villous trophoblasts in culture. We found that palmitate increases syncytiotrophoblast death, specifically by caspase-mediated apoptosis, whereas oleate does not cause enhanced cell death. Importantly, exposure to both fatty acids in equimolar amounts yielded no increase in death or apoptosis, suggesting that oleate can protect syncytiotrophoblasts from palmitate-induced death. We further found that palmitate, but not oleate or oleate with palmitate, increases endoplasmic reticulum (ER) stress, signaling through the unfolded protein response, and yielding CHOP-mediated induction of apoptosis. Finally, we show that oleate or oleate plus palmitate both lead to increased lipid droplets in syncytiotrophoblasts, whereas palmitate does not. The data show palmitate is toxic to human syncytiotrophoblasts, through the induction of ER stress and apoptosis mediated by CHOP, whereas oleate is not toxic, abrogates palmitate toxicity and induces fat accumulation. We speculate that our in vitro results offer pathways by which the metabolic milieu of the obese pregnant woman can yield villous trophoblast dysfunction and sub-optimal placental function.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3