Genetic disorders in the GH–IGF-I axis in mouse and man

Author:

Walenkamp M J E,Wit J M

Abstract

Animal knockout experiments have offered the opportunity to study genes that play a role in growth and development. In the last few years, reports of patients with genetic defects in GH–IGF-I axis have greatly increased our knowledge of genetically determined causes of short stature. We will present the animal data and human reports of genetic disorders in the GH–IGF-I axis in order to describe the role of the GH–IGF-I axis in intrauterine and postnatal growth. In addition, the effects of the GH–IGF-I axis on the development and function of different organ systems such as brain, inner ear, eye, skeleton, glucose homeostasis, gonadal function, and immune system will be discussed. The number of patients with genetic defects in the GH–IGF-I axis is small, and a systematic diagnostic approach and selective genetic analysis in a patient with short stature are essential to identify more patients. Finally, the implications of a genetic defect in the GH–IGF-I axis for the patient and the therapeutic options will be discussed.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3