Author:
Sébert S P,Hyatt M A,Chan L L Y,Yiallourides M,Fainberg H P,Patel N,Sharkey D,Stephenson T,Rhind S M,Bell R C,Budge H,Gardner D S,Symonds M E
Abstract
The recent discovery of an association between body composition, energy intake and the fat mass and obesity-associated (FTO) gene represents a promising new therapeutic target in obesity prevention. In a well, pre-established large animal model, we investigated the regulation ofFTOgene expression under conditions either leading to obesity or increased risk of obesity related disorders: i) a sedentary ‘Western’ lifestyle and ii) prenatal exposure to nutrient restriction. Pregnant sheep were either fed to fully meet their nutritional requirements throughout gestation or 50% of this amount from early-to-mid gestation. Following weaning, offspring were either made obese through exposure to a sedentary obesogenic environment or remained lean. A significant positive relationship between placentalFTOgene expression and fetal weight was found at 110 days gestation. In both the newborn and adult offspring, the hypothalamus was the major site ofFTOgene expression. HypothalamicFTOgene expression was upregulated by obesity and was further increased by prenatal nutrient restriction. Importantly, we found a strong negative relationship between the hypothalamicFTOgene expression and food intake in lean animals only that may imply FTO as a novel controller of energy intake. In contrast,FTOgene expression in the heart was downregulated in obese offspring born to nutrient restricted mothers. In addition,FTOgene expression was unaffected by obesity or prenatal diet in insulin-dependent tissues, where it changed with age possibly reflecting adaptations in cellular energetic activity. These findings extend information gained from human epidemiology and provide new insights into the regulation ofin vivoenergy metabolism to prevent obesity.
Subject
Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献