Pregnancy-specific glycoproteins: evolution, expression, functions and disease associations

Author:

Moore Tom1ORCID,Williams John M1,Becerra-Rodriguez Maria Angeles1,Dunne Matthew2,Kammerer Robert3,Dveksler Gabriela4

Affiliation:

1. 1School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland

2. 2Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland

3. 3Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany

4. 4Uniformed Services University of the Heath Sciences, Bethesda, Maryland, USA

Abstract

Pregnancy-specific glycoproteins (PSGs) are members of the immunoglobulin superfamily and are closely related to the predominantly membrane-bound CEACAM proteins. PSGs are produced by placental trophoblasts and secreted into the maternal bloodstream at high levels where they may regulate maternal immune and vascular functions through receptor binding and modulation of cytokine and chemokine expression and activity. PSGs may have autocrine and paracrine functions in the placental bed, and PSGs can activate soluble and extracellular matrix bound TGF-β, with potentially diverse effects on multiple cell types. PSGs are also found at high levels in the maternal circulation, at least in human, where they may have endocrine functions. In a non-reproductive context, PSGs are expressed in the gastrointestinal tract and their deregulation may be associated with colorectal cancer and other diseases. Like many placental hormones, PSGs are encoded by multigene families and they have an unusual phylogenetic distribution, being found predominantly in species with hemochorial placentation, with the notable exception of the horse in which PSG-like proteins are expressed in the endometrial cups of the epitheliochorial placenta. The evolution and expansion of PSG gene families appear to be a highly active process, with significant changes in gene numbers and protein domain structures in different mammalian lineages and reports of extensive copy number variation at the human locus. Against this apparent diversification, the available evidence indicates extensive conservation of PSG functions in multiple species. These observations are consistent with maternal–fetal conflict underpinning the evolution of PSGs.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3