The impact of gut microbiota on vascularization of the small intestine

Author:

Paeslack Nadja1ORCID,Reinhardt Christoph12ORCID

Affiliation:

1. Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany

2. German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany

Abstract

The commensal microbiota resides in a mutualistic relationship within the mammalian gut. It significantly influences the formation of capillary networks in the small intestine, not only during development but also in adulthood. Mucosal capillaries in small intestinal villus structures play a critical role for the uptake of dietary nutrients and immune regulation. Emerging studies have elucidated how the composition of gut microbiota can influence not only postnatal gut development regarding immune tolerance, nutrient absorption, and morphology but also the development and maintenance of blood and lymphatic capillaries within the small intestine. In particular, the analysis of gnotobiotic mouse models affirmed the importance of the gut microbiota, or even only single gut bacteria, in the remodeling of the small intestinal capillaries. Here, different epithelial-to-endothelial cross talk pathways, e.g. Paneth cell-derived signals, Toll-like receptor signaling, or tissue factor–protease activated receptor-1 signaling, have been reported to affect intestinal villus vascular remodeling in a microbiota-dependent fashion. In this review article, we will provide a comprehensive overview on the relevant microbiota–host interaction pathways, which have been revealed to influence angiogenesis and vascular remodeling in the small intestine.

Publisher

Bioscientifica

Reference128 articles.

1. An insight into gut microbiota and its functionalities;Adak,2019

2. Use of Germ-free animal models in microbiota-related research;Al-Asmakh,2015

3. The gut-liver axis in liver disease: pathophysiological basis for therapy;Albillos,2020

4. Gastrointestinal lymphatics in health and disease;Alexander,2010

5. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas;Apelqvist,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3