Unravelling genetic causality of haematopoiesis on bone metabolism in human

Author:

Ho Shun-Cheong1,Li Gloria Hoi-Yee2,Leung Anskar Yu-Hung3,Tan Kathryn C B3,Cheung Ching-Lung14ORCID

Affiliation:

1. Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong

2. Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Hong Kong

3. Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong

4. Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park , Pak Shek Kok, Hong Kong

Abstract

Abstract Objective Haematopoiesis was shown to regulate bone metabolism in in vivo studies. However, whether haematopoiesis has causal effects on bone health has never been investigated in humans. We aimed to evaluate the causal relationships of blood traits with bone mineral density (BMD) and fracture. Design and methods Using two-sample Mendelian randomization, causal relationship of 29 blood traits with estimated BMD (eBMD), total body BMD (TBBMD), lumbar spine BMD (LSBMD), femoral neck BMD (FNBMD) and fracture were evaluated by inverse-variance weighted (IVW) method and multiple sensitivity analyses. Relevant genetic data were obtained from the largest possible publicly available genome-wide association studies. Results Eight genetically determined red blood cell traits showed positive causal effects on eBMD, with beta estimates ranging from 0.009 (mean corpuscular haemoglobin) to 0.057 (haemoglobin concentration), while three white blood cell traits, including lymphocyte count (beta: −0.020; 95% CI: −0.033 to −0.007), neutrophil count (beta: −0.020; 95% CI: −0.035 to −0.006) and white blood cell count (beta: −0.027; 95% CI: −0.039 to −0.014), were inversely associated with eBMD. Causal effects for six of these blood traits were validated on TBBMD, LSBMD, FNBMD and/or fracture. The association of reticulocyte count (beta: 0.040; 95% CI: 0.016 to 0.063), haemoglobin (beta: 0.058; 95% CI: 0.021 to 0.094) and mean corpuscular haemoglobin concentration (beta: 0.030; 95% CI: 0.007 to 0.054) with eBMD remained significant in multivariable IVW analyses adjusted for other blood traits. Conclusion This study provided evidence that haematopoietic system might regulate the skeletal system in humans and suggested the possible pathophysiology of bone diseases among people with haematological diseases. Significance statement We conducted a novel Mendelian randomization study investigating the causal relationship of blood cells with bone mineral density. Red and white blood cell traits have positive and inverse causal relationship with bone mineral density, respectively, suggesting a potential link of haematopoietic system with the skeletal system in humans. Current findings suggest individuals with related haematological diseases, such as anaemia and leukocytosis, may have a lifelong increased risk of osteoporosis and/or fracture. Given that complete blood count is commonly performed in clinical setting, whether complete blood count can be used to predict fracture risk warrants further investigation.

Publisher

Oxford University Press (OUP)

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3