Impact of 27-hydroxylase (CYP27A1) and 27-hydroxycholesterol in breast cancer

Author:

Kimbung Siker,Chang Ching-yi,Bendahl Pär-Ola,Dubois Laura,Thompson J Will,McDonnell Donald P,Borgquist Signe

Abstract

The impact of systemic 27-hydroxycholesterol (27HC) and intratumoral CYP27A1 expression on pathobiology and clinical response to statins in breast cancer needs clarification. 27HC is an oxysterol produced from cholesterol by the monooxygenase CYP27A1, which regulates intracellular cholesterol homeostasis. 27HC also acts as an endogenous selective estrogen receptor (ER) modulator capable of increasing breast cancer growth and metastasis. 27HC levels can be modulated by statins or direct inhibition of CYP27A1, thereby attenuating its pro-tumorigenic activities. Herein, the effect of statins on serum 27HC and tumor-specific CYP27A1 expression was evaluated in 42 breast cancer patients treated with atorvastatin within a phase II clinical trial. Further, the associations between CYP27A1 expression with other primary tumor pathological features and clinical outcomes were studied in two additional independent cohorts. Statin treatment effectively decreased serum 27HC and deregulated CYP27A1 expression in tumors. However, these changes were not associated with anti-proliferative responses to statin treatment.CYP27A1was heterogeneously expressed among primary tumors, with high expression significantly associated with high tumor grade, ER negativity and basal-like subtype. HighCYP27A1expression was independently prognostic for longer recurrence-free and overall survival. Importantly, the beneficial effect of highCYP27A1in ER-positive breast cancer seemed limited to women aged ≤50 years. These results establish a link between CYP27A1 and breast cancer pathobiology and prognosis and propose that the efficacy of statins in reducing serum lipids does not directly translate to anti-proliferative effects in tumors. Changes in other undetermined serum or tumor factors suggestively mediate the anti-proliferative effects of statins in breast cancer.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3