Characterization of microRNAs differentially expressed during bovine follicle development

Author:

Sontakke Sadanand D,Mohammed Bushra T,McNeilly Alan S,Donadeu F Xavier

Abstract

Several different miRNAs have been proposed to regulate ovarian follicle function; however, very limited information exists on the spatiotemporal patterns of miRNA expression during follicle development. The objective of this study was to identify, using microarray, miRNA profiles associated with growth and regression of dominant-size follicles in the bovine monovular ovary and to characterize their spatiotemporal distribution during development. The follicles were collected from abattoir ovaries and classified as small (4–8 mm) or large (12–17 mm); the latter were further classified as healthy or atretic based on estradiol and CYP19A1 levels. Six pools of small follicles and individual large healthy (n=6) and large atretic (n=5) follicles were analyzed using Exiqon's miRCURY LNA microRNA Array 6th gen, followed by qPCR validation. A total of 17 and 57 sequences were differentially expressed (greater than or equal to twofold; P<0.05) between large healthy and each of small and large atretic follicles respectively. Bovine miRNAs confirmed to be upregulated in large healthy follicles relative to small follicles (bta-miR-144, bta-miR-202, bta-miR-451, bta-miR-652, and bta-miR-873) were further characterized. Three of these miRNAs (bta-miR-144, bta-miR-202, and bta-miR-873) were also downregulated in large atretic follicles relative to large healthy follicles. Within the follicle, these miRNAs were predominantly expressed in mural granulosa cells. Further, body-wide screening revealed that bta-miR-202, but not other miRNAs, was expressed exclusively in the gonads. Finally, a total of 1359 predicted targets of the five miRNAs enriched in large healthy follicles were identified, which mapped to signaling pathways involved in follicular cell proliferation, steroidogenesis, prevention of premature luteinization, and oocyte maturation.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3