Effect of single-chain ovine gonadotropins with dual activity on ovarian function in sheep

Author:

Rutigliano Heloisa M,Adams Betty M,Jablonka-Shariff Albina,Boime Irving,Adams Thomas E

Abstract

We examined the half-life and biological activity of two single-chain proteins that combined portions of ovine FSH and LH. We proposed the hypothesis that these chimeric proteins would display LH and FSH activities and would promote follicle maturation in ewes. Estrus activity was synchronized using progestogen-impregnated vaginal pessaries. To negate the impact of endogenous LH and FSH, animals received serum-containing antibodies against GNRH 1 day before pessary removal (PR). At PR sheep (five animals per group) received a single injection (10 IU/kg, i.v.) of either the ovine-based (oFcLcα) gonadotropin analog, an ovine-based analog containing oLHβ truncated at the carboxyl terminus (oFcL(ΔT)cα), or a human-based gonadotropin analog (hFcLcα). Control animals received a comparable amount of gonadotropin-free protein. Ovulation was induced 3 days after PR using human chorionic gonadotropin (1000 IU, i.v.). Ovaries were collected 11 days after PR. Neither estradiol (E2) or progesterone (P4) production, development of preovulatory follicles or corpora lutea (CL) were noted in control animals receiving gonadotropin-free protein. Significant increase in the synthesis of E2 and P4 was noted in sheep receiving the dually active gonadotropin analogs. The number of CLs present 11 days after PR was significantly increased in sheep receiving the chimeric glycoproteins compared with control animals. The magnitude of the secretory and ovarian responses did not differ between hFcLcα and oFcLcα or between oFcLcα and oFcL(ΔT)cα. Immunoactivity of LH and FSH was low in control animals, but was significantly elevated in sheep receiving the gonadotropin analogs. In conclusion, ovine-based gonadotropin analogs are functionally active in sheep and a single injection is adequate to induce the development of multiple ovulatory follicles.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3