Regulation of ovulatory genes in bovine granulosa cells: lessons from siRNA silencing of PTGS2

Author:

Shrestha Ketan,Lukasik Karolina,Baufeld Anja,Vanselow Jens,Moallem Uzi,Meidan Rina

Abstract

Prostaglandin endoperoxide synthase-2 (PTGS2), tumour necrosis factor-alpha-induced protein-6 (TNFAIP6), pentraxin-3 (PTX3), epidermal growth factor-like factors: amphiregulin (AREG) and epiregulin (EREG) are essential for successful ovulation. In this study, we compared the induction of these ovulatory genes in bovine granulosa cells (GCs) in vivo (after LH surge) and in vitro (forskolin (FRS) treatment). These genes were markedly stimulated in GCs isolated from cows 21 h after LH-surge. In isolated GCs, FRS induced a distinct temporal profile for each gene. Generally, there was a good agreement between the in vivo and in vitro inductions of these genes except for PTX3. Lack of PTX3 induction in isolated GCs culture suggests that other follicular compartments may mediate its induction by LH. Next, to study the role of PTGS2 and prostaglandins (PGs) in the cascade of ovulatory genes, PTGS2 was silenced with siRNA. PTGS2 siRNA caused a marked and specific knockdown of PTGS2 mRNA and PGE2 production (70% compared with scrambled siRNA) in bovine GCs. Importantly, PTGS2 silencing also reduced AREG, EREG and TNFAIP6 mRNA levels but not PTX3. Exogenous PGE2 increased AREG, EREG and TNFAIP6 mRNA levels, further confirming that these genes are prostanoid dependent. A successful and specific knockdown of PTGS2 was also achieved in endometrial cells (EndoCs) expressing PTGS2. Then, cholesterol-conjugated PTGS2 (chol-PTGS2) siRNA that facilitates cells' entry was investigated. In EndoCs, but not in GCs, chol-PTGS2 siRNA succeeded to reduce PTGS2 and PGE2 levels even without transfection reagent. PTGS2 knockdown is a promising tool to critically examine the functions of PTGS2 in the reproductive tract.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3