Steroid metabolomic signature of liver disease in nonsyndromic childhood obesity

Author:

Gawlik Aneta1,Shmoish Michael2,Hartmann Michaela F3,Wudy Stefan A3,Olczak Zbigniew4,Gruszczynska Katarzyna5,Hochberg Ze’ev6

Affiliation:

1. 1Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Upper Silesia Children’s Care Health Centre, Katowice, Poland

2. 2Bioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion – Israel Institute of Technology, Haifa, Israel

3. 3Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany

4. 4Department of Diagnostic Imaging, Upper Silesia Children’s Care Health Centre, Katowice, Poland

5. 5Department of Diagnostic Imaging, School of Medicine in Katowice, Medical University of Silesia, Upper Silesia Children’s Care Health Centre, Katowice, Poland

6. 6Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel

Abstract

Objective Analysis of steroids by gas chromatography-mass spectrometry (GC-MS) defines a subject’s steroidal fingerprint. Here, we compare the steroidal fingerprints of obese children with or without liver disease to identify the ‘steroid metabolomic signature’ of childhood nonalcoholic fatty liver disease. Methods Urinary samples of 85 children aged 8.5–18.0 years with BMI >97% were quantified for 31 steroid metabolites by GC-MS. The fingerprints of 21 children with liver disease (L1) as assessed by sonographic steatosis (L1L), elevated alanine aminotransferases (L1A) or both (L1AL), were compared to 64 children without markers of liver disease (L0). The steroidal signature of the liver disease was generated as the difference in profiles of L1 against L0 groups. Results L1 comparing to L0 presented higher fasting triglycerides (P = 0.004), insulin (P = 0.002), INS/GLU (P = 0.003), HOMA-IR (P = 0.002), GGTP (P = 0.006), AST/SGOT (P = 0.002), postprandial glucose (P = 0.001) and insulin (P = 0.011). L1AL showed highest level of T-cholesterol and triglycerides (P = 0.029; P = 0.044). Fasting insulin, postprandial glucose, INS/GLU and HOMA-IR were highest in L1L and L1AL (P = 0.001; P = 0.017; P = 0.001; P = 0.001). The liver disease steroidal signature was marked by lower DHEA and its metabolites, higher glucocorticoids (mostly tetrahydrocortisone) and lower mineralocorticoid metabolites than L0. L1 patients showed higher 5α-reductase and 21-hydroxylase activity (the highest in L1A and L1AL) and lower activity of 11βHSD1 than L0 (P = 0.041, P = 0.009, P = 0.019). Conclusions The ‘steroid metabolomic signature’ of liver disease in childhood obesity provides a new approach to the diagnosis and further understanding of its metabolic consequences. It reflects the derangements of steroid metabolism in NAFLD that includes enhanced glucocorticoids and deranged androgens and mineralocorticoids.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3