Regulation of liver development: implications for liver biology across the lifespan

Author:

Gruppuso Philip A,Sanders Jennifer A

Abstract

The liver serves a spectrum of essential metabolic and synthetic functions that are required for the transition from fetal to postnatal life. Processes essential to the attainment of adequate liver mass and function during fetal life include cell lineage specification early in development, enzymic and other functional modes of differentiation throughout gestation, and ongoing cell proliferation to achieve adequate liver mass. Available data in laboratory rodents indicate that the signaling networks governing these processes in the fetus differ from those that can sustain liver function and mass in the adult. More specifically, fetal hepatocytes may develop independent of key mitogenic signaling pathways, including those involving the Erk mitogen-activated protein kinases MAPK1/3 and the mechanistic target of rapamycin (mTOR). In addition, the fetal liver is subject to environmental influences that, through epigenetic mechanisms, can have sustained effects on function and, by extension, contribute to the developmental origin of adult metabolic disease. Finally, the mitogen-independent phenotype of rat fetal hepatocytes in late gestation makes these cells suitable for cell-based therapy of liver injury. In the aggregate, studies on the mechanisms governing fetal liver development have implications not only for the perinatal metabolic transition but also for the prevention and treatment of liver disorders throughout the lifespan.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3