3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling

Author:

Dinter Juliane,Mühlhaus Jessica,Jacobi Simon Friedrich,Wienchol Carolin Leonie,Cöster Maxi,Meister Jaroslawna,Hoefig Carolin Stephanie,Müller Anne,Köhrle Josef,Grüters Annette,Krude Heiko,Mittag Jens,Schöneberg Torsten,Kleinau Gunnar,Biebermann Heike

Abstract

Mostin vivoeffects of 3-iodothyronamine (3-T1AM) have been thus far thought to be mediated by binding at the trace amine-associated receptor 1 (TAAR1). Inconsistently, the 3-T1AM-induced hypothermic effect still persists inTaar1knockout mice, which suggests additional receptor targets. In support of this general assumption, it has previously been reported that 3-T1AM also binds to the α-2A-adrenergic receptor (ADRA2A), which modulates insulin secretion. However, the mechanism of this effect remains unclear. We tested two different scenarios that may explain the effect: the sole action of 3-T1AM at ADRA2A and a combined action of 3-T1AM at ADRA2A and TAAR1, which is also expressed in pancreatic islets. We first investigated a potential general signaling modification using the label-free EPIC technology and then specified changes in signaling by cAMP inhibition and MAPKs (ERK1/2) determination. We found that 3-T1AM induced Gi/oactivation at ADRA2A and reduced the norepinephrine (NorEpi)-induced MAPK activation. Interestingly, in ADRA2A/TAAR1 hetero-oligomers, application of NorEpi resulted in uncoupling of the Gi/osignaling pathway, but it did not affect MAPK activation. However, 3-T1AM application in mice over a period of 6 days at a daily dose of 5 mg/kg had no significant effects on glucose homeostasis. In summary, we report an agonistic effect of 3-T1AM on the ADRA2A-mediated Gi/opathway but an antagonistic effect on MAPK induced by NorEpi. Moreover, in ADRA2A/TAAR1 hetero-oligomers, the capacity of NorEpi to stimulate Gi/osignaling is reduced by co-stimulation with 3-T1AM. The present study therefore points to a complex spectrum of signaling modification mediated by 3-T1AM at different G protein-coupled receptors.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3