HSPB1 promotes tumor invasion by inducing angiogenesis in PitNETs

Author:

Li Bin1,Zhao Sida2ORCID,Chen Yiyuan2,Gao Hua2,Xie Weiyan2,Wang Hongyun2,Zhao Peng3,Li Chuzhong3ORCID,Zhang Yazhuo3

Affiliation:

1. Department of Neurosurgery, Peking University People’s Hospital, Beijing, China

2. Department of Cell and Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China

3. Department of Neurosurgical, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Abstract

The clinical diagnosis and treatment of pituitary neuroendocrine tumors (PitNETs) that invade the cavernous sinus are fraught with difficulties and challenges. Exploring the biological characteristics involved in the occurrence and development of PitNETs that invade the cavernous sinus will help to elucidate the mechanism of cavernous sinus invasion. There are differences between intrasellar tumors (IST) and cavernous sinus-invasion tumors (CST) in ultramicrostructure, tumor microenvironment (TME), gene expression, and signaling pathways. The microvascular endothelial cell is increased in CST. The VEGFR signaling pathway, VEGF signaling pathway, and chemokine signaling pathway are activated in CST. HSPB1 is upregulated in CST and promotes cell proliferation, cell viability, and migration. HSPB1 promotes the release of VEGF from GT1-1 cells and activates the VEGF signaling pathway in bEnd.3 cells. HSPB1 promotes the migration of bEnd.3 cells to GT1-1 cells and promotes the formation of blood vessels of bEnd.3 cells. bEnd.3 cells can release CCL3 and CCL4 and promote the vitality, proliferation, and migration of GT1-1 cells. HSPB1 promotes the formation of blood vessels of bEnd.3 cells and ultimately leads to tumor growth in vivo. HSPB1 acts as a key gene for invasion of the cavernous sinus in PitNETs, remodeling TME by promoting the formation of blood vessels of brain microvascular endothelial cells. The synergistic effect of tumor cells and microvascular endothelial cells promotes tumor progression. The mechanism by which HSPB1 promotes tumor invasion by inducing angiogenesis in PitNETs may be a new target for the treatment of PitNETs invading the cavernous sinus.

Publisher

Bioscientifica

Reference41 articles.

1. Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death;Acunzo,2012

2. xCell: digitally portraying the tissue cellular heterogeneity landscape;Aran,2017

3. Targeting the VEGF pathway in osteosarcoma;Assi,2021

4. Glial-endothelial crosstalk regulates blood-brain barrier function;Cheslow,2016

5. On the role of Hsp27 in regulating apoptosis;Concannon,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3