Author:
Fan Anran,Ma Kuiying,An Xinglan,Ding Yu,An Peipei,Song Guangqi,Tang Lina,Zhang Sheng,Zhang Peng,Tan Wentao,Tang Bo,Zhang Xueming,Li Ziyi
Abstract
TET1 is implicated in maintaining the pluripotency of embryonic stem cells. However, its precise effects on induced pluripotent stem cells (iPSCs), and particularly on porcine iPSCs (piPSCs), are not well defined. To investigate the role of TET1 in the pluripotency and differentiation of piPSCs, piPSCs were induced from porcine embryonic fibroblasts by overexpression ofPOU5F1(OCT4),SOX2,KLF4, andMYC(C-MYC). siRNAs targeting toTET1were used to transiently knockdown the expression ofTET1in piPSCs. Morphological abnormalities and loss of the undifferentiated state of piPSCs were observed in the piPSCs after the downregulation ofTET1. The effects ofTET1knockdown on the expression of key stem cell factors and differentiation markers were analyzed to gain insights into the molecular mechanisms underlying the phenomenon. The results revealed that knockdown ofTET1resulted in the downregulated expression of pluripotency-related genes, such asLEFTY2,KLF2, andSOX2, and the upregulated expression of differentiation-related genes includingPITX2,HAND1,GATA6, andLEF1. However,POU5F1,MYC,KLF4, andNANOGwere actually not downregulated. Further analysis showed that the methylation levels of the promoters forPOU5F1andMYCincreased significantly afterTET1downregulation, whereas there were no obvious changes in the promoters ofSOX2,KLF4, andNANOG. The methylation of the whole genome increased, while hydroxymethylation slightly declined. Taken together, these results suggest thatTET1may play important roles in the self-renewal of piPSCs and the maintenance of their characteristics by regulating the expression of genes and the DNA methylation.
Subject
Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献